[♀]Matemática na Veia 2007-2016 O Blog do Estudante Inteligente
Exemplos:
Time de futebol, conjunto musical(banda), família, grupo de escoteiros, etc. Assim podemos denominar conjunto a qualquer coleção de elementos.
Normalmente, indicamos um conjunto por letras maiúsculas: A, B, C,..., X, Y, Z.
Exemplos:
V= Conjunto de letras que são vogais.
A= Conjunto dos estados brasileiros.
P= Conjunto dos números pares.
I= Conjunto dos números impares.
Os elementos são indicados por letras minúsculas: a,b,c,...x,y,z.
Vamos usar a letra x como um elemento e a letra A para um exemplo:
Se x é elemento do conjunto A, então podemos escrever x Є A ( o elemento x pertence ao conjunto A);
Se x não é elemento do conjunto A, então podemos escrever x A ( o elemento x não pertence ao conjunto A).
Um conjunto pode ser representado:
Pela nomeação de seus elementos, um a um, escritos entre chaves, ou,
Pela propriedade de seus elementos, ou ainda,
Por diagramas.
Exemplos:
1º. Seja representar o conjunto A das letras que formam a palavra “Matemática na veia”:
Elementos do conjunto A são = { m,a,t,e,i,c,n} ou
2º. Propriedade dos elementos do conjunto: Ser letra da palavra “ Matemática na veia” = { letras da palavra “Matemática na veia”.}, ou ainda podemos usar.
3º. Diagramas.
Observação: Não é necessário escrever todos os elementos do conjunto. Podemos usar reticências após escrever alguns elementos do conjunto.
Exemplo:
Seja o conjunto dos números pares positivos:
P= { 0, 2, 4, 6,...}
Bom! Acho que por enquanto ficamos por aqui, na próxima postagem vamos falar um pouco mais de conjuntos e aprofundar o conteúdo.
Observação:
- Após terminar seus downloads, passe um antivírus antes de abrir seu arquivo.
- Crie um ponto de restauração no Windows, antes de instalar qualquer programa, ou arquivo.
gostei de mais isso vai me ajudar muito
ResponderExcluirespero algo mais profundo sobre o assunto..
Beleza Maycon! Vai ser aprofundado sim , e dependendo do possível será abordado tudo que tiver relação com conjuntos.
ResponderExcluirAbraços,
Precisava preparar um plano sobre conjuntos e apesar do assunto ser tão fácil não conseguia ter idéia de como prepará-lo, o "Matemática-na-veia" foi o canal.
ResponderExcluirObrigada e espero continuar contando o mesmo, porque achei bom de++++++++++.
Abraços.
Muito obrigado Alaide! Sempre que precisar pode contar conosco. A idéia é melhorar cada vez mais, e contamos com você para elogiar, criticar e ajudar a divulgar o blog.
ResponderExcluirEste Blog é um dos,ou " o melhor", que já vi.Estou estudando para um concurso e estou aprendendo muitas coisas aqui, que não consigo interpretar na apostila;sou muito grato a vocês do " matemática na veia".Abraços e não parem com esse trabalho.
ResponderExcluirObrigado de coração Sr(a) Anônimo! Como já comentei para outros visitantes, o trabalho que fazemos é com o intuito de ajudar o estudante. É muito bom ser reconhecido pelo trabalho que fazemos aqui. Posso dizer que vamos melhorar cada vez mais.
ResponderExcluirObrigado e braços!
paulapinto1971@portugal.pt teoria dos conjuntos ,agradecia uma explicacao mais detanhada se possivel estou um pouco a toa com isso bjs
ResponderExcluirTudo bem Paula? Posso te manadar por e-mail um material super didático. Demorei para responder porque estava com problemas.
ResponderExcluirAté a próxima.
legal gostei aprendi muitooo
ResponderExcluirCaco boa tarde!
ResponderExcluirPoderia me enviar o material didático que enviou para a Paula, estou me preparando para um concurso publico e não entendi muito bem.
rosangela_ma@yahoo.com.br
Olá boa tarde, fiquei com uma dúvida em como devo fazer esse exercício...pode me ajudar?
ResponderExcluirUma pesquisa feita entre leitores de três tipos de revistas em uma cidade contatou que:
• 55 pessoas leem a revista A;
• 55 pessoas leem a revista B;
• 55 pessoas leem a revista C;
• 15 pessoas leem as revistas A e B;
• 20 pessoas leem as revistas C e B;
• 25 pessoas leem as revistas A e C;
• 5 pessoas leem as revistas A, B e C;
Assinale a opção que representa o número de pessoas que participaram da pesquisa:
a. 100
b. 110
c. 105
d.95
e. 90